
Eidgenössische
Technische Hochschule
Zürich

Ecole polytechnique fédérale de Zurich
Politecnico federale di Zurigo
Federal Institute of Technology at Zurich

Departement of Computer Science 3 October 2022
Markus Püschel, David Steurer
François Hublet, Goran Zuzic, Tommaso d’Orsi, Jingqiu Ding

Algorithms & Data Structures Exercise sheet 2 HS 22

�e solutions for this sheet are submi�ed at the beginning of the exercise class on 10 October 2022.

Exercises that are marked by ∗ are “challenge exercises”. �ey do not count towards bonus points.

You can use results from previous parts without solving those parts.

Exercise 2.1 Induction.

(a) Prove via mathematical induction that for all integers n ≥ 5,

2n > n2 .

(b) Let x be a real number. Prove via mathematical induction that for every positive integer n, we have

(1 + x)n =
n∑

i=0

(
n

i

)
xi ,

where (
n

i

)
=

n!

i!(n− i)!
.

We use a standard convention 0! = 1, so
(
n
0

)
=
(
n
n

)
= 1 for every positive integer n.

Hint: You can use the following fact without justi�cation: for every 1 ≤ i ≤ n,(
n

i

)
+

(
n

i− 1

)
=

(
n+ 1

i

)
.

Exercise 2.2 Growth of Fibonacci numbers (1 point).

�ere are a lot of neat properties of the Fibonacci numbers that can be proved by induction. Recall that
the Fibonacci numbers are de�ned by f0 = 0, f1 = 1 and the recursion relation fn+1 = fn + fn−1 for
all n ≥ 1. For example, f2 = 1, f5 = 5, f10 = 55, f15 = 610.

(a) Prove that fn+1 ≤ 1.75n for n ≥ 0.

(b) Prove that fn ≥ 1
3 · 1.5

n for n ≥ 1.

Asymptotic Notation



When we estimate the number of elementary operations executed by algorithms, it is o�en useful
to ignore constant factors and instead use the following kind of asymptotic notation, also called O-
Notation. We denote by R+ the set of all (strictly) positive real numbers and by N the set of all (strictly)
positive integers.

De�nition 1 (O-Notation). Let n0 ∈ N, N := {n0, n0 + 1, . . .} and let f : N → R+. O(f) is the set
of all functions g : N → R+ such that there exists C > 0 such that for all n ∈ N , g(n) ≤ Cf(n).

In general, we say that g ≤ O(f) if De�nition 1 applies a�er restricting the domain to some N =
{n0, n0 + 1, . . .}. Some sources use the notation g = O(f) or g ∈ O(f) instead.

Instead of working with this de�nition directly, it is o�en easier to use limits in the way provided by
the following theorem.

�eorem 1 (�eorem 1.1 from the script). Let f : N → R+ and g : N → R+.

• If lim
n→∞

f(n)
g(n) = 0, then f ≤ O(g) and g 6≤ O(f).

• If lim
n→∞

f(n)
g(n) = C ∈ R+, then f ≤ O(g) and g ≤ O(f).

• If lim
n→∞

f(n)
g(n) =∞, then f 6≤ O(g) and g ≤ O(f).

�e theorem holds all the same if the functions are de�ned on R+ instead of N . In general, lim
n→∞

f(n)
g(n)

is the same as lim
x→∞

f(x)
g(x) if the second limit exists.

�e following theorem can also be helpful when working with O-notation.

�eorem 2. Let f, g, h : N→ R+. If f ≤ O(h) and g ≤ O(h), then

1. For every constant c ≥ 0, c · f ≤ O(h).

2. f + g ≤ O(h).

Notice that for all real numbers a, b > 1, loga n = loga b · logb n (where loga b is a positive constant).
Hence loga n ≤ O(logb n). So you don’t have to write bases of logarithms in asymptotic notation, that
is, you can just write O(log n).

Exercise 2.3 O-notation quiz.

(a) Prove or disprove the following statements. Justify your answer.

(1) n
2n+3
n+1 = O(n2)

(2) e1.2n = O(en)

(3) log(n4 + n3 + n2) = O(log(n3 + n2 + n))

(b) Find f and g as in �eorem 1 such that f = O(g), but the limit limn→∞
f(n)
g(n) does not exist. �is

proves that the �rst point of �eorem 1 provides a necessary, but not a su�cient condition for
f = O(g).

2



Exercise 2.4 Asymptotic growth of ln(n!).

Recall that the factorial of a positive integer n is de�ned as n! = 1× 2× · · · × (n− 1)× n.

a) Show that ln(n!) ≤ O(n lnn).

Hint: You can use the fact that n! ≤ nn for n ≥ 1 without proof.

b) Show that n lnn ≤ O(ln(n!)).

Hint: You can use the fact that
(
n
2

)n
2 ≤ n! for n ≥ 1 without proof.

Exercise 2.5 Triplet Search (2 points).

Given an array of n integers, and an integer t, design an algorithm that checks if there exists three (not
necessarily di�erent) elements of the array a, b, c such that a+ b+ c = t.

(a) Design a simple O(n3) algorithm.

(b) Suppose that elements of the array are integers in the range [1, 100n], and that t ≤ 300n. Design
a be�er algorithm with runtime O(n2) to solve the same problem, assuming the constraints.

Hint: You can use a separate array with O(n) entries to help you. Start with the “naive” algorithm
from (a) and try removing one of the loops with a smart lookup using the new array.

Hint: a+ b+ c = t implies that a = t− b− c.

(c)* Suppose now that, unlike in (b), we don’t have a bound on the size of the integers elements of A
nor on t (but we can still perform arithmetic operations on them in O(1) time). However, they are
given in increasing order in A, i.e., A[1] ≤ A[2] ≤ . . . A[n]. Design an O(n2) algorithm to solve
the same problem, assuming the constraints.

Hint: Exploit the increasing order of A to leverage the computation done in the previous step to help
you in the next one.

3


